Elliot
Администратор
- Регистрация
- 3 Дек 2014
- Сообщения
- 125.481
- Реакции
- 189.695
Складчина: Алгоритмы машинного обучения: базовый курс [Тайлер Венс]
Практическое руководство для новичков, которые хотят понять основы машинного обучения. Здесь представлены ключевые алгоритмы, такие как линейная регрессия, деревья решений, методы опорных векторов и нейронные сети, а также объясняется работа с данными и инструменты Python.
Четкие объяснения, примеры кода и практические задачи помогут быстро освоить теорию и начать применять машинное обучение в реальных проектах. Книга идеально подходит для студентов, аналитиков и разработчиков, делающих первые шаги в этой области.
Спойлер: содержание
Глава 1. Что такое машинное обучение?
Глава 2. Применение машинного обучения
Глава 3. Необходимый базис
Глава 4. Супервизорное обучение
Глава 5. Несувервизорное обучение
Глава 6. Полусупервизорное и обучение с подкреплением
Глава 7. Линейные модели
Глава 8. Методы ближайших соседей
Глава 9. Деревья решений и ансамблевые методы
Глава 10. Методы опорных векторов (SVM)
Глава 11. Нейронные сети
Глава 12. Работа с данными
Глава 14. Разработка ML-проекта
Глава 15. Оценка и валидация моделей
Глава 16. Обучение на больших данных
Глава 17. Обработка и анализ текстовых данных
Глава 18. Применение машинного обучения в реальных приложениях
Цена 690 руб.
Формат epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip
СКАЧАТЬ
Практическое руководство для новичков, которые хотят понять основы машинного обучения. Здесь представлены ключевые алгоритмы, такие как линейная регрессия, деревья решений, методы опорных векторов и нейронные сети, а также объясняется работа с данными и инструменты Python.
Четкие объяснения, примеры кода и практические задачи помогут быстро освоить теорию и начать применять машинное обучение в реальных проектах. Книга идеально подходит для студентов, аналитиков и разработчиков, делающих первые шаги в этой области.
Спойлер: содержание
Глава 1. Что такое машинное обучение?
Глава 2. Применение машинного обучения
Глава 3. Необходимый базис
Глава 4. Супервизорное обучение
Глава 5. Несувервизорное обучение
Глава 6. Полусупервизорное и обучение с подкреплением
Глава 7. Линейные модели
Глава 8. Методы ближайших соседей
Глава 9. Деревья решений и ансамблевые методы
Глава 10. Методы опорных векторов (SVM)
Глава 11. Нейронные сети
Глава 12. Работа с данными
Глава 14. Разработка ML-проекта
Глава 15. Оценка и валидация моделей
Глава 16. Обучение на больших данных
Глава 17. Обработка и анализ текстовых данных
Глава 18. Применение машинного обучения в реальных приложениях
Цена 690 руб.
Формат epub, fb2, fb3, ios.epub, mobi, pdf, txt, zip
СКАЧАТЬ
Что бы скачивать сливы курсов и складчины вы должны зарегистрироваться
Возможно, Вас ещё заинтересует:
- Управление проектами [EASY managment] [Ксения Домбровская]
- Подписка на контент Осознанная меркантильность (август 2025) [Тариф Волчара] [Антон Назаров]
- Курс Кто. Определите, с кем достигнете успеха [EASY managment] [Оксана Лихачева]
- Как координировать директора [EASY managment] [Оксана Лихачева]
- Новое мышление - Новая жизнь (2024) [Тариф Самостоятельный] [Джо Диспенза]
- Божественная Женщина [Тариф Божественная Женщина] [Аполлинария Метелица]